Thursday, May 7, 2009

Evaluating Bandwidth Choices-OC3 vs OC12 vs OC48

Looking for bandwidth? That can be a daunting Streamyx frustrating task even in the best of situations. There's Streamyx to consider in order to make the right decision for your needs. Below you'll find some help when evaluating OC3 vs OC12 vs OC48. Factors covered include Technology, Speed, Description, Application, Pros, Cons, Streamyx Cost.

~~~~~~~~~

Technology: OC3

Speed: 155.52 Mbps

Description: Optical carrier (fiber) connected by equipment capable of speeds up to 155.52 Mbps.

Application: Large enterprise or ISP backbone.

Pros: Extremely high speed and throughput.

Cons: Extremely high cost.

Costs: Expect cost of an OC3 to start at around a $10-30,000 for a stable, Streamyx system (e.g. from a Tier 1 provider).....not including local loop or extensive setup. However....the pricing for these connections can vary Streamyx depending on the carrier, Streamyx of service and the application for which the connection is being used. For example...Tier 1 providers may cost more than local/regional Tier 2 and Tier 3 providers but are much more stable and reliable. A Tier 1 provider should always be the provider of choice for any business serious about the quality of their OCx network.

~~~~~~~~~~

Technology: OC12

Speed: 622.08 Mbps

Description: Optical carrier (fiber) connected by equipment capable of speeds up to 622.08 Mbps.

Application: Large enterprise or ISP backbone.

Pros: Extremely high speed and throughput.

Cons: Extremely high cost.

Costs: Expect cost of an OC12 to start at around $1-300,000+ for a stable, reliable system (e.g. from a Tier 1 provider)..... plus several hundred thousand dollars in setup costs. However....the pricing for these connections can vary widely depending on the carrier, location of service and the application for which the connection is being used. A Tier 1 provider should always be the provider of choice for any business serious about the quality of their OCx network.

~~~~~~~~~~

Technology: OC48

Speed: 2.488 Gbps (Gigabytes per second)

Description: Optical carrier (multiple strands of fiber) connected by equipment capable of speeds up to 2.488 Mbps.

Application: Large enterprise or ISP backbone.

Pros: Extremely high speed and throughput.

Cons: Extremely high cost.

Costs: Expect cost of an OC48 to start at around $3-500,000 for a stable, reliable system (e.g. from a Tier 1 provider)..... plus several hundred thousand dollars in setup costs. However....the pricing for these connections can vary widely depending on the carrier, location of service and the application for which the connection is being used. A Tier 1 provider should always be the provider of choice for any business serious about the quality of their OCx network.

Michael is the owner of FreedomFire Communications....including DS3-Bandwidth.com and Business-VoIP-Solution.com. Michael also authors Broadband Nation where you're always welcome to drop in and catch up on the latest BroadBand news, tips, insights, and ramblings for the masses.

Beam coverage areas for satellite internet in all Asia countries. Check your country and contact the appropriate service providers.

An Introduction to ATM (Asynchronous Transfer Mode) Networks

The standards for ATM were first developed in Streamyx mid 1980s. The goal was to design a single networking strategy that could transport real-time video and audio as well as image files, text and email.

ATM (Asynchronous Transfer Mode) has been proposed as an enabling network technology to support broadband integrated services. It was designed to provide a single platform for the transmission of voice, video and Streamyx at specified quality of service and at speeds varying from fractional T1 to Gbps.

Currently voice, data and video are transported by different lajukan streamyx Voice is transported by the public telephone network, and data by a variety of packet-switched networks. Video is transported by networks based on coaxial Streamyx satellites and radio waves. ATM is designed to integrate all these services together.

However, ATM itself is not a complete, stand-alone networking standard; rather, ATM defines a common layer of interoperability called the ATM layer, on which various services ranging from telephony and video conferencing to TCP/IP data networking and multimedia can be delivered.

The ATM layer defines a common format used for switching and multiplexing bit streams from one end of an ATM network to another. The ATM layer then uses the hardware facilities of lower layers to deliver the bits across individual links in a network.

A variety of such physical layers have been defined, most of which are based on existing standards in order to maximally leverage existing technologies and installed bases.

Technically, ATM is a cell relay, packet switching network and data link layer protocol which encodes data traffic into small fixed-sized cells (53 bytes; Streamyx bytes of data and 5 bytes of header information).

ATM provides data link layer services that run over Layer 1 links. This differs from other technologies based on packet-switched apply streamyx as IP or Ethernet), in which variable sized packets (known as frames when referencing Layer 2) are used.

ATM is a connection-oriented technology, in which a logical connection is established between the two endpoints before the actual data exchange begins.

ATM has proven very successful in the WAN scenario and numerous telecommunication providers have implemented ATM in their wide-area network cores. Many ADSL implementations also use ATM. However, ATM has failed to gain wide use an a LAN technology, and its complexity has held back its full deployment as the single integrating network technology in the way that its inventors original intended.

Why? The reason is that there will always be both brand-new and obsolescent link-layer technologies, particularly in the LAN area, not all of them fit neatly into the synchronous optical networking model for which ATM was designed.

Therefore, a protocol is needed to provide a unifying layer over both ATM and non-ATM link layers, as ATM itself cannot fit that role. IP already does that; therefore, there is often no point in implementing ATM at the network layer.

In the early 1990s, ATM was once posed to replace Ethernet and IP networks. But Ethernet made a Streamyx come-back when it was defined to run at 100Mbps and later on at 1Gbps. As a result, ATM lost the battle to the "desktop".

Colin Yao is an expert on fiber optic communication technologies and products. Learn more about innerduct conduit, hdpe innerduct, corrugated innerduct on Fiber Optics For Sale Co. web site

KUALA LUMPUR, May 7 ?Share prices on Bursa Malaysia ended mixed today on mild profit-taking activities on last hour of trading with interests confined to selected heavyweights, dealers said.

However, gains mostly in Bumiputra-Commerce, Tenaga and Maybank managed to cap some of the losses.

At 5pm, the benchmark Kuala Lumpur Composite Index (KLCI) eased 0.49 of a point or 0.048 per cent to close the day at 1,023.47.